
HONOR CODE
Questions Sheet.
A. Easy. Lets C. [6 Points]

Q1-6
B. Easy. RISCV Magic. [7 Points]

7. What is the minimum set of registers need to be stored onto the stack at this point: line 4.
? [1]
8. What is the minmum set of registers need to be stored onto the stack at this point: line 14.
? [1]
9. What is the minmum set of registers need to be restored from the stack at this point: line
30 ? [1]
10. Assume you have the prologue and epilogue correctly coded. You set a breakpoint at
`line 6: CHECK". What does result contain when your program pauses at the breakpoint? [4]

C. RISC-V Instructions Encoding [5 points]
11. For the instruction line 7: beq s1, x0, end . What is the immediate field
12. What is actual opcode, rs1 and rs2 (not pseudo-names) ?
13. What is funct7 and funct3 ?
14. What is the instruction corresponding to 0x0004A503 ?

D. RISC-V Custom Opcodes [6]
15. What is the minimum bits would be required for the opcode field? [1]
16. If the opcode was encoded 5 bits and we would like to support the usual R-type
instructions, 2 source and 1 destination. What is the maximum number of registers we can
use? [1]
17. Given the opcode is 5 bits wide. Each register field is 3 bits. What is the offset in terms
of bytes that the branch instruction can jump forward. Note that instructions are 19 bits
wide. [2]
18. What is the max negative offset that an I instruction can use ? Opcode bits is same as
Q15. Assume that register width is same as Q16. [2]

E. Easy Floating Point [5 points]
19. What is the smallest non-zero positive value that can be represented? [1]
20. How do you represent the number 4.5 ? [1]
21. How do you represent [1]
22. How many numbers can this 10 bit floating point represent in the range 1 ≤ f < 8). Hint:
Write does the floating point expressions for 1 and 8 and the answer should be apparent. [1]
23. Sort the following numbers 0x300, 0x100, 0x104, 0x328, 0x12c smallest to largest [1]

F. Unsigned/Signed Numbers [5]
24. Represent -133 as a 8-bit NOT number. [1]
25. Represent -124 as 8-bit NOT number. [1]

−2−9

26. What is the range of numbers represented by 8 bit NOT8. [1]
27. What is the representation that requires fewest number of bits needed to cover the given
range 0 to 10. [1]
28. What is the representation that requires fewest number of bits needed to cover the given
range -1 to 4. [1]

G. Bitgames. Write down single line expressions that calculate the following. [4]
29. NegativeFloat(x) - Return bit-level equivalent of expression -f for floating point argument
f. Assume f is N bits
30. is_float_power_of_2(float x, int e, int m).

H. Assembler Linker Compiler [6]
31. How many pseudo instructions and registers ? [2]
32. What is the symbol and relocation table ? [2]
33. Replace the labels of PC-relative targets with their immediate values. What is the offset
value of bnez at address 0x20? Write your answer in decimal. [2]

G. RISCV
34. What is the value of s2 at the end of the program ? Write in hex (e.g., 0xFFFF) [3]

HONOR CODE
I have not used any online resources during the exam.
I have not obtained any help either from anyone in the class or outside when completing this
exam.
No sharing of notes/slides/textbook between students.
NO SMARTPHONES.
CANVAS ANSWERS WILL BE LOCKED AFTER 1ST TRY.

Questions Sheet.
Read all of the following information before starting the exam:

For each question fill out the appropriate choice or write text on Canvas page. Also type clearly
on in the exam on the appropriate text.
IF THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF
THE MULTIPLE-CHOICE ANSWER IS CORRECT, WE WILL READ THE WRITTEN PORTION.
Show all work, clearly and in order, if you want to get full credit.
We reserve the right to take off points if we cannot see how you logically got to the answer (even
if your final answer is correct).
Circle or otherwise indicate your final answers.

Please keep your written answers brief; be clear and to the point.
I will take points off for rambling and for incorrect or irrelevant statements. This test has seven
problems.

A. Easy. Lets C. [6 Points]

Q1-6

Grayscale color values can be represented as an ascii value between 0---255. Consider square
images of pixels.
We can organize these 2D images into a 1D array of elements.
Each element is an 8 bit number.

Fill out the following function tile . It returns a new, larger image array, which is the same image
tiled rep times in both the x and y direction. You may or may not need all of the lines. For a better idea
of what must be accomplished, consider the above example:

Now fill-in-the blanks for the code shown below on canvas.

N ×N

N 2

char *img = malloc(sizeof(char) * 4);
img[0] = 0xA;
img[1] = 0xB;
img[2] = 0xC;
img[3] = 0xD;

1
2
3
4
5

char *t_img = tile(img, 2, 2);
// The contents of tiled_image
would then look like:
[0xA, 0xB, 0xA, 0xB
0xC, 0xD, 0xC, 0xD
0xA, 0xB, 0xA, 0xB
0xC, 0xD, 0xC, 0xD];

1
2
3
4
5
6
7

char *tile(char*b, int n, int rep) {
 int w =_______Q1_____________________;
 char *t_img = malloc(__________Q2______);
 for (int j = 0; j < w; j++) {

 for (int i = 0; i < w; i++) {
 int x = ___Q3____;
 int y = ___Q4____;
 int loc = _Q5____;
 t_img[loc] = b[x + y*n];
 }

 }
 _______Q6 (could be multiple lines)______;
 return t_img;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Q1: n * rep
Q2: or
Q3: i%n
Q4: j%n
Q5: + i
Q6: Blank or nothing

B. Easy. RISCV Magic. [7 Points]
Assume we have two arrays input and output.

Study the following RISC-V code shown below and answer the questions.
You can assume a0:input a1:result a2:8

w ∗ w w ∗ w ∗ sizeof(char)

j ∗ w

int *input = malloc(8*sizeof(int));
int *result = malloc(8, sizeof(int));
for (int i = 0; i < 8; i++) {

 input[i] = i;
}

1
2
3
4
5

test.md 2024-07-31

1 / 3

To understand and fill in the blanks in the tile function, let's analyze what the function needs to do and

how the given example corresponds to the expected output.

The tile function takes three arguments:

�. char *b: The original image data.

�. int n: The size (width/height) of the original image (assumed square).

�. int rep: The number of times the image should be repeated both horizontally and vertically.

The function's goal is to create a new image t_img by tiling the original image rep times horizontally and

vertically. Let's fill in the blanks based on this understanding:

Analyzing the Tiling Process

Given:

Original image data: 0xA, 0xB, 0xC, 0xD
Tiling 2x2:

Output (tiled) image data:

[0xA, 0xB, 0xA, 0xB
 0xC, 0xD, 0xC, 0xD
 0xA, 0xB, 0xA, 0xB
 0xC, 0xD, 0xC, 0xD]

Determining the Fill-in-the-Blanks

�. Q1: int w = _______;

The width of the new tiled image. Since the original image is n x n and is to be tiled rep times

in both dimensions, the width of the new image is n * rep.

int w = n * rep;

�. *Q2: char t_img = malloc(__________);

Allocate enough memory for the tiled image. The size of the memory should be the total

number of pixels, which is w * w.

char *t_img = malloc(w * w * sizeof(char));

�. Q3: int x = ______;

The horizontal position in the original image. To determine this, we use the modulus operation

on the current position i in the new image by n to wrap around.

test.md 2024-07-31

2 / 3

int x = i % n;

�. Q4: int y = ______;

The vertical position in the original image. To determine this, we use the modulus operation on

the current position j in the new image by n.

int y = j % n;

�. Q5: int loc = ______;

The position in the new tiled image array. This can be calculated using j * w + i.

int loc = j * w + i;

�. Q6 (could be multiple lines):

Since the new image is created and filled, there might be additional operations, such as freeing

allocated memory or other post-processing, but in this case, we only need to return the newly

created t_img.

// No additional operations needed here, return the pointer to the new
image.

Final Code

Here's the filled-out tile function:

char *tile(char *b, int n, int rep) {
 int w = n * rep;
 char *t_img = malloc(w * w * sizeof(char));
 for (int j = 0; j < w; j++) {
 for (int i = 0; i < w; i++) {
 int x = i % n;
 int y = j % n;
 int loc = j * w + i;
 t_img[loc] = b[x + y * n];
 }
 }
 return t_img;
}

test.md 2024-07-31

3 / 3

Explanation:

int w = n * rep;: Calculates the width of the new tiled image.

char *t_img = malloc(w * w * sizeof(char));: Allocates memory for the new tiled image.

int x = i % n; and int y = j % n;: Calculate the position in the original image to fetch the

data from, based on the current position in the new tiled image.

int loc = j * w + i;: Calculates the location in the new image where the pixel value should be

placed.

t_img[loc] = b[x + y * n];: Assigns the value from the original image to the new tiled image.

Returns t_img, the pointer to the tiled image data.

7. What is the minimum set of registers need to be stored onto the stack at
this point: line 4. ? [1]

t0, t1, t2, a0,a1,a2

8. What is the minmum set of registers need to be stored onto the stack at
this point: line 14. ? [1]

s0 s1,ra

9. What is the minmum set of registers need to be restored from the stack
at this point: line 30 ? [1]

s0 s1,ra

main:

 addi a2, zero, 8
Q7 What registers need to be stored onto the stack?
 jal ra, MAGIC # a0 holds input, a1 holds result a2 holds 8.
 # CHECK finished calling BLACKBOX...
.... # Other code and function calls.
exit:
 addi a0, x0, 10
 add a1, x0, x0
 ecall # Terminate ecall

BLACKBOX:
Q8 What registers need to be stored onto the stack?
 mv s0, zero
 mv s1,a1
 mv t0, zero
loop:
 beq t0, a2, done
 lw t1, 0(a0)
 add s0, s0, t1
 slli t2, t0, 2
 add t2, t2, s1
 sw s0, 0(t2)
 addi t0, t0, 1
 addi a0, a0, 4
 jal x0, loop
done:
 mv a0, s0
Q9 TODO: epilogue. What registers need to be restored?
jr ra

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10. Assume you have the prologue and epilogue correctly coded. You set a
breakpoint at `line 6: CHECK". What does result contain when your program
pauses at the breakpoint? [4]

0 1 3 6 10 15 21 28

C. RISC-V Instructions Encoding [5 points]
Consider the standard RISC-V encoding below. Standard 32 bit instructions. Answer questions below

11. For the instruction line 7: beq s1, x0, end . What is the immediate field

24

12. What is actual opcode, rs1 and rs2 (not pseudo-names) ?

opcode: 0x63
rs1: 01001 (x9)
rs2: 00000 (x0)

13. What is funct7 and funct3 ?

f3 - 0 f7 N/A

14. What is the instruction corresponding to 0x0004A503 ?

lw x10 0(x9) or

lw a0, 0(s1) or
line 6

main:
mv s1, a0
addi t2, t2 4

Start:
beq s1, x0, End

 lw a0, 0(s1)
addi a0,a0,4
add s1, t2, s1

 lw s1, 0(s1)
 jal x0, Start
End:

addi a0,a0,10
 ecall

1
2
3
4
5
6
7
8
9
10
11
12
13

D. RISC-V Custom Opcodes [6]
Prof. Shriraman is designing a new CPU with fewer operations. He decides to adapt and rethink the
design of RISC-V instruction. He only needs to support 9 different operations: ADD, MUL, XOR, LD,
SW, LUI, ADDI, MULI and BLT. He decides that each instruction should be 19 bits wide.

The fields in each instruction are listed below (no funct3 and funct7)

R-type: rs2,rs1,rd,opcode
I-type and Loads: imm,rs1,rd,opcode
S-type: imm,rs2,rs1,opcode
B-type: imm,rs2,rs1,opcode
U-type: imm,rd,opcode
UJ-type: imm,rd,opcode

15. What is the minimum bits would be required for the opcode field? [1]

4 bits

16. If the opcode was encoded 5 bits and we would like to support the usual
R-type instructions, 2 source and 1 destination. What is the maximum
number of registers we can use? [1]

4 bits. 16 registers.

17. Given the opcode is 5 bits wide. Each register field is 3 bits. What is the
offset in terms of bytes that the branch instruction can jump forward. Note
that instructions are 19 bits wide. [2]
19 - (3 + 3 + 5) = 8 bits for imm
(27 - 1) - max positive offset OR if you assume 19 bit instructions are (3 byte aligned)
then multiply by 3.

18. What is the max negative offset that an I instruction can use ? Opcode
bits is same as Q15. Assume that register width is same as Q16. [2]

Opcode: 4 bits
Register: 4 bits. AddI requires 1 rd and 1rs.
Imm= 19 - 4 + 4 + 4 = 7 bits. −26

E. Easy Floating Point [5 points]

test.md 2024-07-31

1 / 2

Let's break down the given answers step-by-step based on the modified RISC-V instruction set with 19-bit

instructions and the specified fields:

Question 15: Opcode Bits

Question: What is the minimum number of bits required for the opcode field?

Answer: 4 bits

Explanation: To represent 9 different operations, we need at least (\lceil \log_2(9) \rceil = 4) bits, as (2^3 =

8) is not sufficient, and (2^4 = 16) provides enough room for 9 operations. Hence, the opcode field requires

a minimum of 4 bits.

Question 16: Maximum Number of Registers

Question: If the opcode is encoded with 5 bits and we would like to support the usual R-type instructions

(2 source registers and 1 destination register), what is the maximum number of registers we can use?

Answer: 4 bits for registers, 16 registers total.

Explanation: Given that each instruction is 19 bits wide and we assume a 5-bit opcode, we can calculate

the number of bits available for registers:

Total instruction bits: 19

Bits for opcode: 5

Remaining bits for register fields in an R-type instruction (which has 3 registers: rs1, rs2, and rd):

(19 - 5 = 14) bits remaining

To distribute these among 3 registers:

Each register field gets (\lfloor 14/3 \rfloor = 4) bits.

Thus, each register field can have 4 bits, allowing for (2^4 = 16) registers.

Question 17: Offset for Branch Instruction

Question: Given a 5-bit opcode and 3 bits per register, what is the offset in terms of bytes that the branch

instruction can jump forward?

Answer: 254 bytes

Explanation: For a B-type instruction:

Opcode: 5 bits

rs1: 3 bits

rs2: 3 bits

Total bits for fixed fields:

(5 + 3 + 3 = 11) bits

test.md 2024-07-31

2 / 2

Remaining bits for immediate (imm):

(19 - 11 = 8) bits

Since the immediate field can be a signed number (and thus can represent both positive and negative
values), the maximum positive value for an 8-bit field is (2^7 - 1 = 127). However, since instructions are 19 bits

wide, we assume the CPU uses 3-byte (24-bit) aligned addressing for jumps, allowing jumps to only even addresses.

Thus, the maximum offset is:

(127 \times 3) bytes (since each increment in the imm field represents 3 bytes due to the alignment

requirement).

Question 18: Maximum Negative Offset for I-Type Instruction

Question: What is the maximum negative offset that an I-type instruction can use? Assume the same

opcode bit width and register width as in the previous questions.

Answer: -26

Explanation: For an I-type instruction:

Opcode: 4 bits (from Q15)

rd: 4 bits (destination register, from Q16)

rs1: 4 bits (source register, from Q16)

Immediate (imm): remaining bits

Total bits used by opcode and registers:

(4 + 4 + 4 = 12) bits

Remaining bits for immediate field:

(19 - 12 = 7) bits

The immediate field in I-type instructions is a signed number, so it can represent both positive and negative

values. The range for a signed 7-bit number is from -64 to 63.

The maximum negative offset, therefore, is:

(-64 + 1 = -63) (since -64 is the most negative value representable, but typically the range is from

-63 to 63 when accounting for signed representation in immediate fields).

.

The TAs get tired of having to convert floating-point values into 32 bits. As a result they propose the
following smaller floating-point representation which is useful in a number of machine learning
applications. It consists of a total of 10 bits as show below.
Exponent is biased similar to conventional floating point.

Sign Exponent Mantissa

1 bit 5 bits. 4 bits.

Numbers are rounded to the closest representable value. Any numbers that have 2 equidistant
representations are rounded down towards zero.

19. What is the smallest non-zero positive value that can be represented?
[1]

 = Denormalized form. exponent is and mantissa is

20. How do you represent the number 4.5 ? [1]

0x112

0 10001 0010

exppnent: 17 - 15 = 2
 * 1.125 = 4.5

21. How do you represent [1]

0x260

1 00110 0000

22. How many numbers can this 10 bit floating point represent in the range
1 ≤ f < 8). Hint: Write does the floating point expressions for 1 and 8 and the
answer should be apparent. [1]

1 is 0x70 . 0 0111 0000 =
8 is 0xa0 . 0 1010 0000 =

There are 16 numbers, 0111 0000
There are 16 numbers, 1000 0000
There are 16 numbers, 1001 0000

Total - 48

2 18− 2 14− 2 4−

22

−2−9

1 × 20

1 × 23

test.md 2024-07-31

1 / 3

Let's go through the questions one by one based on the given 10-bit floating point format, which has 1 sign
bit, 5 exponent bits, and 4 mantissa bits.

Question: What is the smallest non-zero positive value that can be represented?

Answer: The smallest non-zero positive value is represented in the denormalized form, where the exponent is

zero and the mantissa has a leading 1.

Explanation:

Sign bit (s): 0 (indicating positive)

Exponent bits: 00000 (which denotes the denormalized form)

Mantissa bits: 0001 (smallest non-zero mantissa)

For denormalized numbers:

The exponent is effectively (1 - \text{bias}), where bias is (2^{(5-1)} - 1 = 15).

In this case, the exponent is (1 - 15 = -14).

The significand (or mantissa) for denormalized numbers is calculated as (0.\text{mantissa_bits}), so

for the given mantissa bits (0001), the significand is (0.0001_2 = 1 \times 2^{-4} = 2^{-4}).

Thus, the smallest non-zero positive value is: [2^{-14} \times 2^{-4} = 2^{-18}]

Question 20: Representation of the Number 4.5

Answer: 0x112 or 0 10001 0010.
Explanation:

Sign bit (s): 0 (positive number)

Exponent calculation: The number 4.5 in binary is (100.1_2). This can be written as (1.001 \times

2^2).

Exponent bits:

The exponent is 2. To represent this, we use the formula (\text{exponent} = E + \text{bias}).

Here, bias is 15, so (E = 2), and the exponent value in bits is (2 + 15 = 17).

The exponent bits in binary are 10001.

Mantissa bits: The significant part after removing the leading 1 (implicit) is 0010.

Thus, the representation of 4.5 in this floating point format is:

Binary: 0 10001 0010

Hexadecimal: 0x112

test.md 2024-07-31

2 / 3

Question: How do you represent the number with the hex code 0x260?

Answer: 1 00110 0000.

Explanation:

Sign bit (s): 1 (indicating a negative number)

Exponent bits: 00110

Mantissa bits: 0000

To convert 0x260 into binary:

0x260 in binary is 1 00110 0000.

Question: How many numbers can this 10-bit floating point represent in the range (1 \le f < 8)?

Answer: There are 48 numbers.

Explanation: To determine the representable numbers within a range, we need to look at the exponents and

the corresponding mantissas.

Representation of 1

For the smallest normalized value (f = 1):

Binary Representation: 1.0000 (implicit leading 1)

Exponent: (0) in real value, represented as (0 + 15 = 15).

Exponent bits: 01111

So, the binary representation is 0 01111 0000 (in hex: 0x70).

Representation of 8

For the value (f = 8):

Binary Representation: 1.0000 (implicit leading 1)

Exponent: (3) in real value, represented as (3 + 15 = 18).

Exponent bits: 10010

So, the binary representation is 0 10010 0000 (in hex: 0xa0).

Counting the Representable Numbers

For each exponent value, the mantissa can vary, providing different numbers. The range covers exponent

values from:

15 (0x70, for (f = 1)) to

17 (0x90) but not including 18 (0xa0, for (f = 8)).

test.md 2024-07-31

3 / 3

For each exponent value, the mantissa can vary from 0000 to 1111 (16 possible values). There are 3

exponent values (15, 16, and 17), so the total number of representable numbers is: [3 x 16 = 48]

Thus, 48 numbers can be represented in the range (1 \leq f < 8).

23. Sort the following numbers 0x300, 0x100, 0x104, 0x328, 0x12c smallest
to largest [1]

Shown are the hex representations.

0x300 (-2), 0x100 (2), 0x104 (2.5), 0x328 (-12), 0x12c (14)

F. Unsigned/Signed Numbers [5]
Suppose that we define a new number format, NOT.
 Negative numbers are represented by the binary NOT

of the binary representations of their corresponding positive numbers. Like 2's
complement most significant bit of NOT denotes the number’s sign (0 for positive, 1 for negative).
Answer the following questions.

NOT (~)

Input Output

1 0

0 1

24. Represent -133 as a 8-bit NOT number. [1]

N/A

25. Represent -124 as 8-bit NOT number. [1]

124 - 0111 1100
-124 - 1000 0011

26. What is the range of numbers represented by 8 bit NOT8. [1]

-127 to +127

27. What is the representation that requires fewest number of bits needed to
cover the given range 0 to 10. [1]

Unsigned. 4 bits

28. What is the representation that requires fewest number of bits needed to
cover the given range -1 to 4. [1]

∼

Two's complement 3.

G. Bitgames. Write down single line expressions that
calculate the following. [4]

29. NegativeFloat(x) - Return bit-level equivalent of expression -f for floating
point argument f. Assume f is N bits

N | 0x1 <<

30. is_float_power_of_2(float x, int e, int m).

Normalized number : 1.m * ()
((x & (2^e-1) << m) != (2^e -1)) && (x & (2^m -1)) == 0

H. Assembler Linker Compiler [6]

31. How many pseudo instructions and registers ? [2]

(31)

2 −e 1 − bias

.data
str: string "The sum of 1..100 is %d \n"

.text
main:
 add sp,sp -4
 sw ra, 0 (sp)
 mv a1, zero
 li x9, 100
 j check

loop:
 mul s2,x9,x9
 add a1,a1,s2
 add x9,x9,-1

chk:
 bnez x9, loop
 la a0, str
 jal printf
 mv a0,zero
 lw ra, 0(sp)
 addi sp,sp,4
 ret

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

8 instructions, 7 registers (sp,ra,a2,zero,s2,a1,a0)
mv,li,j,bnez,la,jal,ret

32. What is the symbol and relocation table ? [2]

main 0x0

loop 0x14

chk 0x20

str 0x80

Relocation

Inst Addr Dep

la 0x24 str

jal printf 0x28 printf

33. Replace the labels of PC-relative targets with their immediate values.
What is the offset value of bnez at address 0x20? Write your answer in
decimal. [2]

-12. Note that bnez is located at 8 instructions from start; code always starts at 0x0. Each instruction is
4 bytes. Thus bnez is located at 32 bytes from start (or 0x20 in hex). its target is 3 instructions before or
-12.

G. RISCV

34. What is the value of s2 at the end of the program ? Write in hex (e.g.,
0xFFFF) [3]

Initial values: s0 = 0xC, s1 = 0xA, a0 = 3, a1 = 0, a2 = 2

Arrvindh

Arrvindh
Assume data segment starts at 0x80. This was mentioned in class

Answer: 0xE

Start is address of beq a1,a0,end We are doing start+20 and moving it into a4. Question is what is 20
bytes from start

Assuming start is at 0 (you can really assume any address). Each instruction is 4 bytes 0 : beq 4: lw 8: slli
12: add 16: sw 20: add s2,s1,s0

So you are loading the word at address 20 bytes from start. Which is the encoded add s2,s1,s0 (whatever
the 32 bit number is)

a4: Instruction encoding of add s2,s1,s0 (0x00848933)

a5: modifies lines up 2 in the funct 3 position. line 7 repeatedly modifies funct3 and increments it by 2. First

iteration its 0x2 : slt operation . Next iteration its 0x4: xor operation. Finally 0x4: or operation.

Loop only runs 3 times. So final iteration the value in x2 is 0xC | 0xA = 0xE

.text
 la a3, start
start:

beq a1,a0,End
 lw a4,20(a3)
 slli a5,a2,12
 add a4,a4,a5
 sw a4, 20(a3)
 add s2,s1,s0
 addi a1,a1,1
 j start

End:
 addi a0,zero,10
 ecall

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

