
HONOR CODE
I have not used any online resources during the exam.
I have not obtained any help either from anyone in the class or outside when completing this exam.
No sharing of notes/slides/textbook between students.
NO SMARTPHONES.
CANVAS ANSWERS WILL BE LOCKED AFTER 1ST TRY.

Questions Sheet.
Read all of the following information before starting the exam:

For each question fill out the appropriate choice or write text on Canvas page. Also type clearly on in the exam on the appropriate text.
IF THE MULTIPLE CHOICE ANSWER IS WRONG WE WILL MARK THE ANSWER WRONG. IF THE MULTIPLE-CHOICE ANSWER IS CORRECT,
WE WILL READ THE WRITTEN PORTION.
Show all work, clearly and in order, if you want to get full credit.
I reserve the right to take off points if I cannot see how you logically got to the answer (even if your final answeris correct).
Circle or otherwise indicate your final answers.
Please keep your written answers brief; be clear and to the point.
I will take points off for rambling and for incorrect or irrelevant statements. This test has six problems.

HONOR CODE
Questions Sheet.
Section Virtual Memory 22 points. Canvas Q1-Q22

Common questions. Canvas Q1-Q2
For the virtual address 0x2cade0 answer the following Canvas Q3-Q12
For the virtual address 0x301754 answer the following. Canvas Q13-Q22

B. Section Cache I Questions. 15 points. Canvas Q23-Q25
C. Section Cache II Questions. 20 points. Canvas Q26-Q31
D. RISC-V Pipeline 20 points. Canvas Q32-Q41
E. RISC-V Datapath 20 points. Canvas Q42-Q51
F. RISC-V Program 10 points. Canvas Q52-Q53

Section Virtual Memory 22 points. Canvas Q1-Q22
 Refer slide deck L21-VM-III Week 8 if you need to.

The chart below shows how memory accesses are treated in a system. The table below describes the parameters int he memory system.
Please use the data below to answer question groups Q1,Q2,Q3,Q4 on canvas.

 CAUTION: When converting from binary to hex you can always pad the MSB
 e.g., 10 1010 (6 bit field) in hex is 0010 1010 (2 0s padded in MSB)
 is 0x2a .

Parameter Value

Physical address bits 18

Size of page 1KB or 1024 bytes

Virtual address bits 22

------------------------- ---------------------

TLB Sets 4

TLB Ways 4

TLB Size 16 entries

----------------------- -------------------

Cache block 16 bytes

Cache size 256 bytes

Cache Sets 4

Cache Ways 4

Terminology

VPN - Virtual page number
Index (Set index of cache or TLB)
PPN - Physical page number
INVALID. TLB entry is invalid
TLB-T (TLB Tag)

TLB

Way 0 PPN

TLB-T:[0xe8] Index:[0x0] INVALID

TLB-T:[0x2fa] Index:[0x1] 0x8d

TLB-T:[0x71] Index:[0x2] INVALID

TLB-T:[0x2ca] Index:[0x3] 0x70

Way 1 PPN

TLB-T:[0x23c] Index:[0x0] 0x91

TLB-T:[0x2fc] Index:[0x1] 0xfa

TLB-T:[0x5] Index:[0x2] 0x99

TLB-T:[0x2db] Index:[0x3] 0x13

Way 2 PPN

TLB-T:[0x1ce] Index:[0x0] INVALID

TLB-T:[0x301] Index:[0x1] 0xbd

TLB-T:[0x236] Index:[0x2] INVALID

TLB-T:[0x21a] Index:[0x3] INVALID

Way 3 PPN

TLB-T:[0x118] Index:[0x0] INVALID

TLB-T:[0xf] Index:[0x1] 0x33

TLB-T:[0x298] Index:[0x2] INVALID

TLB-T:[0x29d] Index:[0x3] 0x1f

Page Table (Partial)

 CAUTION: Only partial table relevant to the questions are shown.

VPN PPN Valid

0xb2b 0x70 1

0x8e9 0x8d 1

0xc05 0xbd 1

0x2db 0x13 1

0x738 ---- 0

0x3a0 ---- 0

0xbe9 0x9d 1

0x1c6 ---- 0

0x8f0 0x91 1

0xbf1 0x47 1

0x016 0x99 1

Cache

Way 0

Way 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tag:
[0x917]
Index:
[0x0]

0xe8 0x13 0x9e 0x26 0xaf 0xc5 0x72 0x44 0xbc 0x6d 0x78 0x50 0x66 0x2f 0x66 0x8f

Tag:
[0x8d5]
Index:
[0x1]

0xe4 0x2b 0x0d 0xd3 0xa0 0xb2 0x0f 0x9a 0xe9 0x7e 0xc8 0x0e 0x1e 0x13 0xea 0x6a

Tag:
[0x707]
Index:
[0x2]

0x5a 0xd9 0xc9 0x38 0x50 0xba 0x35 0x0c 0x4c 0x8c 0xd7 0xc7 0xaa 0x79 0x2f 0x0d

Tag:
[0x7b7]
Index:
[0x3]

0x57 0xb4 0x4c 0xda 0x4a 0xbb 0xc6 0x25 0x8c 0x5f 0x7a 0x24 0xd5 0xac 0xc4 0xc3

Way 1

Way 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tag:
[0x133]
Index:
[0x0]

0x4f 0xa0 0x34 0x03 0x7c 0x72 0x20 0x46 0x12 0xbd 0x7b 0x74 0xbe 0xf7 0x38 0x11

Tag:
[0x761]
Index:
[0x1]

0xb9 0x0f 0x68 0x06 0xe4 0xb7 0xad 0x7d 0xca 0xb1 0x83 0x10 0xa2 0x9e 0x9f 0xd8

Tag:
[0x336]
Index:
[0x2]

0x27 0x90 0x08 0x04 0x50 0xbe 0xd8 0x7b 0x92 0x08 0x9b 0xb7 0x6d 0xe1 0xc2 0x2e

Tag:
[0xbaf]
Index:
[0x3]

0xcb 0x7d 0x7e 0x48 0x04 0x40 0xba 0x33 0x79 0xca 0x50 0x1d 0x4f 0xf5 0xbd 0x8e

Way 2

Way 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tag:
[0x39]
Index:
[0x0]

0xe6 0x03 0x8b 0x4f 0xcc 0x42 0x16 0xa7 0xd0 0x8d 0x9b 0x7d 0x9e 0x10 0x36 0x9d

Tag:
[0xdc0]
Index:
[0x1]

0x47 0x8f 0x7a 0x8f 0x70 0x57 0xbd 0x90 0xef 0xec 0x5f 0xb4 0x1e 0x62 0xe8 0xd6

Tag:
[0x1f8]
Index:
[0x2]

0xce 0xbd 0xa3 0xd5 0x22 0x46 0xb9 0x27 0xee 0x57 0x28 0xe8 0x7a 0x27 0x2f 0x3c

Tag:
[0xfab]
Index:
[0x3]

0xee 0xef 0xe6 0xcd 0x00 0xe7 0x3f 0xd9 0x65 0xd0 0xcc 0x60 0x27 0x80 0x7b 0xe3

Way 3

Way 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tag:
[0x2b0]
Index:
[0x0]

0x35 0x76 0x31 0xa3 0x23 0x54 0x74 0x1e 0xc1 0x16 0xd3 0x18 0x59 0xfb 0xdf 0x2a

Tag:
[0xbdd]
Index:
[0x1]

0xc5 0x87 0x52 0x27 0x94 0xcd 0xe4 0x53 0xeb 0xb5 0xa2 0xd9 0x28 0x61 0x34 0x43

Tag:
[0x47c]
Index:
[0x2]

0xbe 0xd0 0xfa 0xd1 0xad 0x91 0xb4 0xb4 0x2c 0x43 0xce 0x45 0xc0 0xdb 0x73 0x44

Tag:
[0x815]
Index:
[0x3]

0x27 0x3f 0xce 0xd8 0xc7 0x1d 0xbe 0x2c 0xa5 0x4f 0x0d 0x13 0x55 0xde 0xa5 0xed

Common questions. Canvas Q1-Q2
1. How many bits is the VPN ?

12

2. How many bits is the PPN ?

8

For the virtual address 0x2cade0 answer the following Canvas Q3-Q12
What is the VPN

0xb2b

What is the TLB tag.

0x2ca
Is it a TLB hit or miss

Hit
Is it a page fault

NO
What is the PPN ?

0x70
what is the cache tag ?

0x707
what is the cache index

0x2
What is the byte offset

0x0
Is it a cache hit or miss

Hit
What is the data byte

0x5a

For the virtual address 0x301754 answer the following. Canvas Q13-Q22
What is the VPN

0xc05
What is the TLB tag.

0x301
Is it a TLB hit or miss

Hit
Is it a page fault

NO
What is the PPN ?

0xbd
what is the cache tag ?

0xbdd
what is the cache index

0x1
What is the byte offset

0x4
Is it a cache hit or miss

Hit
What is the data byte

0x94 (Correct). If you answered None of the above or 0x27 you got points.

B. Section Cache I Questions. 15 points. Canvas Q23-Q25
 Refer L14-Cache I if you have to

Let the A[0] be at 0x00000 and B[0] be at 0x10000. The size of an integer is 4 bytes. Size of each array is 1024 ints. Describe the behavior of the
following code when run on the cache and answer the questions. Assume that there is 1 level of cache and it is completely empty when starting this
program. The size of the cache is 2 KB, 16 sets, 16 ways and 8 byte blocks.

23. What is the miss rate for loop 1? (Assume that only loop 1 runs). 5 points

1/2

Miss/Hit Pattern is MMHH.The hit rate is 50%.

24. What is in the cache at the end of loop 1? 5 points

A[0:31], B[0:31]

25. What is the miss rate for loop 2 ? Assume that loop 1 has already run to completion and has warmed up the cache. 5 points

Hit rate: 10/12
Miss rate: 2/12 or 1/6

The miss/hit pattern is H A (index - 8) H A(index-16) M (A-index) H HM (iteration=0), HHHHHH (iteration 1).
Each 6 accesses are from one iteration of the for loop.
10/12 accesses

In the first iteration of loop 2, B[index-16], A[index-16], B[index-8] and A[index-8] are already in the cache (since loop 1 has run,
see answer to question 24). (index=32 so B[16], A[16], B[24], A[24] are all in the cache)
B[32] and A[32] are not in the cache. So in this iteration you have 4 hits and 2 misses.
In the second iteration, since each block has 8 bytes (2 ints), B[33] and A[33] are now in the cache since they were brought in
during the first loop iteration when you accessed B[32] and A[32]. So the second iteration has 6 hits.
So after two iterations you have 10 hits and 2 misses.
This pattern repeats for the 3rd and 4th iterations (miss on A[34] and B[34] and hit on all the others), and continues to repeat for
all other pairs of iterations in loop 2.

extra: How does the 16 ways work, what elements are stored in each way?
Each way stores a different block that belongs to the same cache set. All ways in a set have the same set index bits but
different tag bits. Please review the cache lecture (week 7) for more details about set-associative caches.

int A[1024], B[1024];
void loops() {
 // Loop 1
 for (int index = 0; index < 32; index++) {

 B[index] = 0xff;
 A[index] = 0xff;

 }
 // Loop 2
 for (int index = 32; index < 1024 index++) {

 B[index] = B[index - 16] + A[index - 16] ;
 A[index] = B[index - 8] + A[index - 8] ;

 }
}
1 level of cache
+--------------+
| 16 sets |
| 16 ways |
| 8 byte block|
+--------------+

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

C. Section Cache II Questions. 20 points. Canvas Q26-Q31

26. Assuming the total size of the physical address is 32 bits. What is the number of bits required by tag, index and offset (4 points)

Tag: 23 Index: 4 Offset: 5

27. What is the hit rate of this direct-mapped cache? (4 points)

0 . B[i] conflicts with A[i]. Direct mapped cache. A is brought in and then B is brought in and evicts A. Nothing hits.

28. What type of misses occur (Conflict, Compulsory, Capacity) ? (2 points)

Conflict and Compulsory.

29. Now consider a 2-way set associative cache. 512 bytes. 8 words/block.
What is the hit rate ? (4 points)

1/2. MMHH
A[0] and A[3] fall in the same cache line
B[0] and B[3] fall in the same cache line . i+=4 means you access every fourth element. A block has 8 words and you access 2.30.
What type of misses occur (Conflict, Compulsory, Capacity) ? (2 points)

Compulsory

31. Now consider a 4-way set associative cache. 512 bytes. 8 words/block.
What is the hit rate ? (4 points)

1/2

int src[2048]; Address - 0x0000
int dest[2048]; Address - 0x1000
for (int i = 0; i<2048; i += 4) {
 b[i] = a[i];
}

Cache Parameters

sizeof(int) - 4 bytes
1 level of cache
+------------------------+
| 512 byte |
|Direct mapped |
|32 bytes/block or 8 ints|
+------------------------+

Cache layout

 1 way (Direct mapped)
 +------------------+
 |(32 byte or 8 int)|
 +------------------+
 | |
 +------------------+

16 | |
sets+------------------+

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

D. RISC-V Pipeline 20 points. Canvas Q32-Q41
 Refer slide deck L29-Hazard Week 11 if you need to.

Consider a typical 5-stage (Fetch,Decode,EXecute,Memory,WriteBack) pipeline.Assume pipeline registers exist where the dotted lines are

This pipeline is more simple than the one you dealt with in the assignment.

Forwarding/Bypassing is not implemented; dependent instructions will have to wait in the ID stage.
(CAUTION: In lecture we illustrated dependent instructions waiting in the IF stage)
Following a branch, the next instructions always fetches from PC+4 until the branch is resolved in the WB stage
(CAUTION: Note that the lecture slides resolved branch in the EX stage). Flush the pipeline if branch is taken.
We can read and write from the same registers or memory location in the same clock cycle. Any memory location can be accessed

Answer questions based on the following program

 Hint: Start by creating a pipeline sheet similar to Assignment 6 (with pen and paper)

32. In which cycle does addi x18,x0,0 (instruction 2) run the EX stage ?

Cycle 4.

33. In which cycle does beq x9,x18,exit (instruction 3) read the registers?

Cycle 6. beq reads register x18 and instruction 2 writes register x18.

addi x9, x0, 0xF # Instruction 1
addi x18, x0, 0 # Instruction 2
beq x9, x18, exit # Instruction 3
lw x9, 10(x8) # Instruction 4
xor x9, x9, x18 # Instruction 5
exit:
 sw x9, 10(x8) # Instruction 6

1
2
3
4
5
6
7

ashriram
Sticky Note
sw should start IF at cycle 8?
Pipeline sheet missed that). So it remains stalled in IF for two cycles (until xor leaves ID) then stalls two more cycles in ID.

ashriram
Sticky Note
It stalls in ID for two extra cycles (like the question mentions). In the pipeline discussion from class and assignment 6, it would stall in IF and not proceed to ID until its dependences are satisfied (cycle 6 where instruction 2 finishes WB).

After a branch, you fetch the next sequential instruction (at address PC+4) so instruction 4 goes to IF in cycle 3. Then if the branch turns out to be taken (in EX), you stall the subsequent instructions and start fetching from the correct target address of the branch in the next cycle (after branch finishes EX).

34. In which cycle does the lw x9, 10(x8) (instruction 4) start the IF stage ?

Cycle 4 or Cycle 6 depending on whether beq stalled in IF or ID.

35. In which cycle does the lw x9, 10(x8) read the registers ?

Cycle 7.

36. In which cycle does the xor x9, x9, x18 (instruction 5) reach the IF stage ?Cycle 7.

37. In which cycle does the xor x9,x9,x18 (instruction 5) read the registers ?

Cycle 10. Not until lw reaches the WB stage. xor is dependent on the load.
load writes x9. xor reads x9

38. In which stage is sw x9, 10(x8) stalled and how many cycles?

ID and spends 3 cycles in it (2 cycles of which are stalls).

Now when comparing to baseline pipeline (forwarding/bypassing implemented, branch resolves in EX etc). Then sw would start at IF 8 (but here it starts

at 10 so 2 additional cycles). Then further 2 cycles for ID (so total 4 cycles).

39. In which cycle does the sw x9, 10(x8) (instruction 6) write the memory location ?Cycle 15

40. How many instructions are stalled due to data hazards ?

3

41. How many cycles do we have stall in total for this program ? i.e., Consider a program with 6 instruction and no hazards and ran to completion in T
cycles. This program completed in T_hazard cycles. What is (T_hazard - T)?

6

The first thing to notice for this question is that the datapath does not implement bypassing. Recall that instructions read their registers in stage ID, and
write registers in WB. These restrictions mean that if instruction B needs a register that instruction A writes, then B can start the ID stage in the same
cycle.

Instruction 2: This doesn’t have any data dependencies, so we just need to worry about structural hazards. It can start as soon as the IF stage is
available (cycle 2.

Instruction 3: This instruction reads register x18 which was written by the previous instruction. Therefore we must wait until the previous has reached
its WB stage before running beq’s ID stage (c6).

Instruction 4: lw s1 0xc(s0):At this point, the result of the branch doesn’t matter because it is always predicted to be not taken. Also, the branch doesn’t
write any registers,so we don’t have any data dependencies and can start as soon as the stages are available. In this case, the fetch can start on c4,
but the decode has to wait until beq is in the EX stage. (Cycle 7)

Instruction 5: This instruction cannot start until the load instruction is in the ID stage.

Instruction 6: Data hazard on instruction 5. Store reads register x9, xor calculates register x9. Branch is not taken so all instructions can continue
running.

IF branch is taken, then we have to wait till WB to flush (following instructions may enter the pipeline)

E. RISC-V Datapath 20 points. Canvas Q42-Q51
We wish to introduce a new instruction into our RISC-V datapath.
RELU . This is related to the relu operation in assignment 3. The instruction works as follows.

It combines the semantics of branch, load and store.

Like a load it performs arithmetic using the ALU for calculating R[rs1]+offset the memory address to be modified.
Like a store it updates the MEM[address] with a value (either rd or 0).
Like a branch it performs comparison. However the operands used are different. In a typical branch operation A<=B A is obtained from rs1 and B
is obtained from rd_rs2. In RELU, A is always 0 and B is rd_rs2.
Typically, the branch comparison will modify PC. However, here the branch comparison influences what value is stored to Memory, either R[rd_rs2]
or 0.
Further, the branch comparison influences the value of rd in a load operation, if the branch comparison fails the R[rd_rs2] is 0.

 Caution 1: In a typical RISC-V instruction rs2 field is used as source only and rd as destination only.

 In this case we are using the rd field also as a source when performing the comparison operation line 4

 and writing to memory (line 5). We are also using rd field as a destination register in line 8.

Given the single cycle datapath below, select the correct modifications in parts such that the datapath executes correctly for this new instruction (and
all other instructions!). You can make the following assumptions:

We have a new control signal RELU which is 1 if the instruction being decoded is a RELU
ALUsel is add when we have a RELU instruction
The immediate generate sign extends the offset similar to load instructions.

 Caution 2: Pay careful attention to which input line is 1 and which line is 0 in the muxes.

 Some muxes choose top-most input as 0, some choose bottom-most input as 0

 Hint: YOU DO NOT REQUIRE TRUTH TABLES

 Try writing down in plain english or reading out the logic

 to yourself e.g, !(A<=B) is A is not equal to B and A is not LT (less than) B

rd_rs2, is a register that acts as a source
and destination register
RELU rd_rs2, offset(rs1)
if (0<=R[rd_rs2])
 MEM[R[rs1]+offset] = R[rd_rs2]
else
 MEM[RS[rs1]+offset] = 0
 R[rd_rs2] = 0

1
2
3
4
5
6
7
8

Baseline Pipeline

Pipeline with RELU (Red boxes indicate questions)

42. What type of instruction is RELU ?

I-type Load. 1 source, 1 destinaton, 1 immediate. However the instruction also uses rd as a rs2 for branch comparisons and writing to memory.
We use rd as rs2 since rs2 is the only register that is forwarded to memory as well in stores.

43. Which instruction field can be written to memory in the baseline pipeline?

rs2

44. Consider the following modifications to the source Reg[] inputs. Which configuration will allow this instruction to execute correctly without
breaking the ex-ecution of other instructions in our instruction set?

A.
45. Consider the following modifications to the Branch . Which con-figuration will allow this instruction to execute correctly without breaking the ex-

ecution of other instructions in our instruction set? Branch calculates A==B and A<B

A. All branches are comparisons of type A==B? or A<B? Here if RELU we set A = 0 and B = R[Rs2] (default
behavior). So we are comparing 0 < R[rs2]? , 0 == R[Rs2]. If we say NOT (== OR <) i.e, Not
(0<R[rs2]) AND NOT (0<R[Rs2]) . Then it is strictly greater 0 >R[rs2]. The else part of the block

46. Consider the following modifications to the DMEM inputs. Which configuration will allow this instruction to execute correctly without breaking the

execution of other instructions in our instruction set?

C. If RELU and 0 > R[rs2] then pick 0 as the value to be written to memory, otherwise then block pick R[rs2]. If
not RELU also pick R[rs2] e.g., for store instructions

47. Consider the following modifications to the DMEM control signal. Which configuration will allow this instruction to execute correctly without
breaking the execution of other instructions in our instruction set?

D.

48. Consider the following modifications to the WB . Which configuration will allow this instruction to execute correctly

C. If RELU and 0 > R[rs2] then pick 0 as the value to be written to register (the else part of

the RELU instruction). If 0<= R[rs2] then does not matter what we pick cause we are

going to be disabling RegWen (see next question). If not RELU, pick default.

49. Consider the following modifications to the RegWEn mux inputs. Which configuration will allow this instruction to execute

correctly

B. If RELU and 0 > R[rs2] then pick 0 as the value to be written to register (the else part of the RELU
instruction). If 0<= R[rs2] then does not matter what we pick cause we are going to be disabling RegWen
(see next question). If not RELU, pick default.

50. What is the value of ASel?0 (we are using the ALU to calculate rs1+offset. The address for memory)

51. What is the value of BSel?1

F. RISC-V Program 10 points. Canvas Q52-Q53
We will be introducing a new instruction called lwa in RISC-V. In baseline RISCV the loads calculate addresses using an immediate and register.
However, in many programs typically the address is calculated using 2 registers. The semantics of the lwa instruction (lwa rd,rs1,rs2) are dst =
MEM[rs1+rs2] e.g., lets say a0=0x4 a1=0x1000 lwa a2,a1,a0. a2 = MEM[0x1004]

You want to impress your friend, so you predict the result of executing the program as it is written, just by looking at it. If the program is guaranteed to
execute without crashing, describe what it prints, otherwise explain the bug that may cause a crash.

52. What 8 memory locations are modified. 5 points

0x10000028-0x1000002F
skayaks\0 - 8 characters
ZYXWVUTSRQPONMLKJIHGFEDCBA12345\0 - 32 characters
The init starts at byte 40. or 0x28 from the base address of the data segment
0x10000000. `a` will not be modified as branch will jump back to loop header.

53. What is the value in those memory locations. 5 points

GOYAYOG

We simply take the bottom 5 bits of the byte value of each letter and then use it as an idex to lookup the table. e.g., the bottom 5 bits of S is 19. Using table
as an array of 31 characters. Position number 19 is G.

You need to trace the value of each register in this code as it runs.
a0 starts with the address of string a 'skayaks' and is incremented by 1 inside the loop (line 12)
a1 starts with the address of string init (7 Xs) and is incremented by 1 inside the loop (line 19)

Each loop iteration: You load a character into s2 from string a at a time (read s then k then a etc.) (line 9) and exit if you read the end of string character (line
10) s4 stores the address of string table (line 13)
subtract 97 (ascii for a) from s2, so now s1 contains the order of the letter in the alphabet (line 15)
extract the last five bits from the character in s2 (line 16)
Use s2 as an index into table to get the character in position s2 (line 17)
You store that character into the corresponding character in string init (line 18)
So you basically copy the letters from table into init, where the index of the leter you write is the same as the order of the corresponding letter of string a in
the alphabet.

.globl main

.data
a: .string "skayaks"
table: .string "ZYXWVUTSRQPONMLKJIHGFEDCBA12345"
init: .string "XXXXXXX" # 7 Xs

.text
loop_header:

lbu s2, 0(a0) # Read character ch
beqz s2, end
addi s7,a0,0

 addi a0,a0,1
la s4,table

loop:
addi s1, s2, -97 #
andi s2,s2,0x1F # andi performs bitwise & lwa
s2,s2,s4 # New instruction
sb s2, 0(a1)
addi a1,a1,1
j loop_header

end:
 ret

main:
 la a0, a
 la a1,init
 jal loop_header
 li a0,10
 ecall

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

ashriram
Sticky Note
You need to trace the value of each register in this code as it runs.
a0 starts with the address of string a 'skayaks' and is incremented by 1 inside the loop (line 12)
a1 starts with the address of string init (7 Xs) and is incremented by 1 inside the loop (line 19)

Each loop iteration:
You load a character into s2 from string a at a time (read s then k then a etc.) (line 9) and exit if you read the end of string character (line 10)
s4 stores the address of string table (line 13)
subtract 97 (ascii for a) from s2, so now s1 contains the order of the letter in the alphabet (line 15)
extract the last five bits from the character in s2 (line 16)
Use s2 as an index into table to get the character in position s2 (line 17)
You store that character into the corresponding character in string init (line 18)

So you basically copy the letters from table into init, where the index of the letter you write is the same as the order of the corresponding letter of string a in the alphabet.

